2018 Grouse & Grazing Project Vegetation Monitoring and Grazing Report Sheep Creek Study Site

Andrew Meyers¹, Courtney Conway^{1,2}, Karen Launchbaugh¹, Dave Musil³, Paul Makela⁴, Shane Roberts³

<u>Suggested Citation</u>: Meyers A. R., C. J. Conway, K. Launchbaugh, D. Musil, P. Makela, and S. Roberts. 2018. Vegetation Monitoring and Grazing Report: Sheep Creek Study Site. College of Natural Resources, University of Idaho.

¹College of Natural Resources, University of Idaho, Moscow, ID 83844

²U.S. Geological Survey-Idaho Cooperative Fish & Wildlife Research Unit, University of Idaho, Moscow, ID 83844

³Idaho Department of Fish and Game, Boise, ID 83712

⁴Bureau of Land Management, Boise, ID 83709

Table of Contents

INTRODUCTION	3
Study Design	3
STUDY AREA	5
Sheep Creek	5
FIELD METHODS	8
Nesting-Season Vegetation Surveys	8
Plot Placement in the Field	9
Landscape Appearance	10
Stocking Rate	11
SUMMARIZATION METHODS	12
Pasture Boundaries	12
Pasture Level	12
Grass Height Measurements	12
Shrub Cover	12
Utilization	13
Stocking Rate	13
RESULTS	14
Weather	14
Descriptive Vegetation Characteristics	14
Pasture Level Comparison	14
Grass Height Measurement Comparison	17
Shrub Cover	18
Stocking Rates and Grazing Pressure	19
Estimates of Utilization.	21
REFERENCES	24

INTRODUCTION

Livestock grazing is a common land use within sage-grouse (*Centrocercus urophasianus*) habitat, and livestock grazing has been implicated as one of numerous factors potentially contributing to sage-grouse population declines (Beck and Michell 2000, Schroeder et al. 2004). However, there are also numerous mechanisms by which livestock grazing might benefit sage-grouse (Beck and Michell 2000, Crawford et al. 2004). Livestock grazing on public lands is often restricted so as to limit negative effects on populations of plants and animals (including sage-grouse), but we lack experimental studies that have explicitly examined the effects of livestock grazing on sage-grouse. The objective of the Grouse & Grazing Project is to document the relationship between cattle grazing and sage-grouse demographic traits, nest-site selection, and habitat features. We focus on grazing regimes that include spring cattle grazing because spring is thought to be the time when livestock grazing is most likely to adversely affect sage-grouse (Neel 1980, Pedersen et al. 2003, Boyd et al. 2014).

In 2018, we split our annual reports for this project into two separate reports: one that summarizes field methods, sage-grouse demographic traits, and other data streams and another that summarizes the habitat measurements and grazing metrics that we collect at each study site. Our goal in the vegetation and grazing reports (one for each study site) is to: 1) document the plant community at each site, 2) quantify the % biomass removed or utilization of forage species by cattle at each site, and 3) provide detailed data to assist BLM managers and permittees with management of their grazing and adherence to the Grouse & Grazing study design.

Study Design

The Grouse & Grazing project uses a paired Before-After-Control-Impact (BACI) experimental design with spatial and temporal replication and a staggered-entry approach to evaluate the effects of cattle grazing on sage-grouse demographic traits and habitat characteristics. Paired BACI designs that include both spatial and temporal replication are considered one of the most rigorous experimental designs to assess the effects of a treatment or management action (Green 1979, Bernstein and Zalinski 1983, Stewart-Oaten et al. 1986). We plan to gather data at each study site for >6 years (>2 years before experimental changes in grazing intensity and ≥ 4 years after experimental changes in grazing intensity). We are using a 'staggered-entry' design so that experimental changes in grazing intensity are not initiated at all study sites in the same year. Precipitation and temperature can have large effects on biomass of grasses and forbs and on sage-grouse demographic traits (Skinner et al. 2002, Moynahan et al. 2007, La Pierre et al. 2011, Hovick et al. 2015) and the staggered-entry design will also help us differentiate responses caused by the experimental changes in grazing intensity versus those caused by annual variation in weather. For example, this design ensures that all of the experimental changes in grazing intensity do not occur during a particularly wet or dry year (i.e., it allows separation of a 'year effect' from a 'treatment effect').

Treatment	Year 1	Year 2	nts	Year 3	Year 4	Year 5	Year 6
Spring Odd Years	Current grazing	Current grazing	Treatments	Spring Grazing	No Grazing	Spring Grazing	No Grazing
Spring Even Years	Current grazing	Current grazing	Grazing T	No Grazing	Spring Grazing	No Grazing	Spring Grazing
No Grazing	Current grazing	Current grazing		No Grazing	No Grazing	No Grazing	No Grazing
Spring and Fall	Current grazing	Current grazing	Implement	Spring Grazing	Fall Grazing	Spring Grazing	Fall Grazing

Figure 1. Experimental design to evaluate potential effects of cattle grazing on sagegrouse demographic traits and habitat features.

At each study site, we collect data (e.g., habitat measurements, utilization estimates, etc.) for ≥2 years prior to experimental changes in grazing intensity (Fig. 1). These initial years of field work and data collection at each study site allow us to identify grazing pastures that are appropriate for inclusion in the experiment (based on discussions with permittees and BLM managers and the presence of nesting sage-grouse) and they provide the "Before" measures of demographic traits for the BACI design. In the spring of the 3rd year of sampling at each study site, we alter the grazing regime in 4 pastures per study site and begin grazing those pastures according to 1 of 4 grazing treatments: 1) spring-only grazing in odd years, 2) spring-only grazing in even years, 3) no grazing, and 4) alternating years of spring-only grazing and fall-only grazing (Fig. 1). We define spring grazing as 1 March through 15 June and fall grazing as 1 September through 15 December.

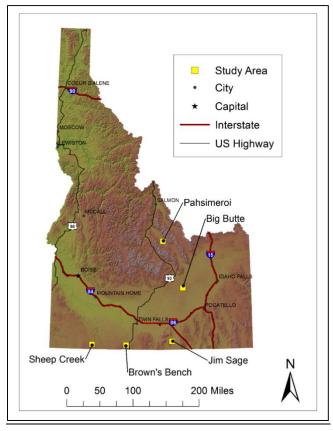


Figure 2. Five study sites in southern Idaho where field work has been conducted for the Grouse & Grazing project in 2018.

STUDY AREA

Sheep Creek

We began work at the Sheep Creek study site in 2015. This study site is located 115 km south of Mountain Home, ID to the east of the Owyhee Mountains and just north of the Idaho-Nevada border. The Bruneau River delineates the eastern boundary of the study site and Sheep Creek delineates the western boundary. This is our least-disturbed study site in terms of human development; only a few small ranch houses are located near the study site. Topography ranges from gently sloping hills to stark canyons and rocky outcrops. Soils belong primarily to the Alzola, Brace-Freshwater, and Roca-Freshwater complexes. These consist of shallow (~60 cm) to moderately deep (>120 cm) well-drained soils with slopes ranging from 1-20%, and silty loam to gravely loam textures. Low sagebrush (*Artemesia arbuscula*) and Wyoming big sagebrush (*Artemesia tridentata wyomingensis*) are the most common shrubs at this site and common forage grasses include bluebunch wheatgrass (*Pseudoroegneria spicata*), Sandberg bluegrass (*Poa secunda*), and Idaho fescue (*Festuca idahoensis*).

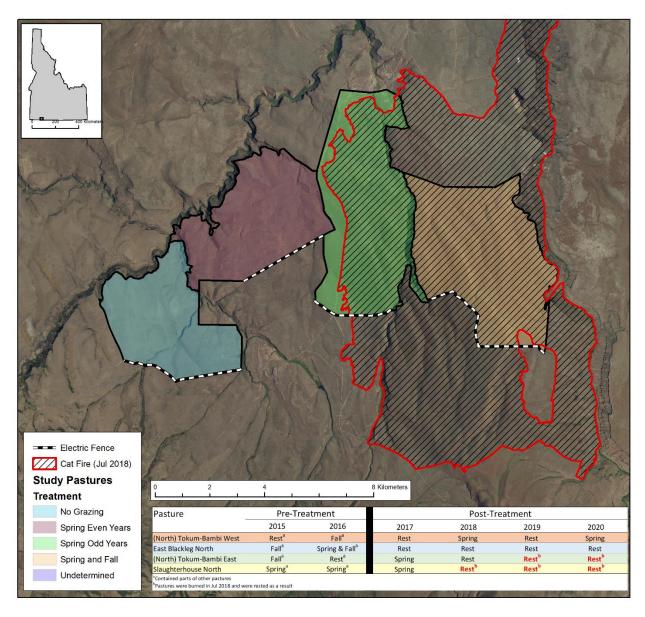


Figure 3. Map of treatment pastures and timeline of treatments at Sheep Creek, Idaho 2015-2020. The Cat Fire is included to show its proximity to our treatment pastures.

Elevation ranges from 1540-1795 m (mean 1691 m; USGS National Elevation Dataset). Precipitation comes primarily in the form of snow between November and March with 30-year normal averaging 332 mm (1980-2010; NOAA Online Climate Dataset). Monthly average temperature ranges from a low of -1.4° C (Dec) to a high of 19.4° C (Jul) based on the most recent 30-year normal (1980-2010; NOAA Online Climate Dataset). Bureau of Land Management (BLM) manages pastures within the Alzola and Blackleg/Bull Creek Trap allotments. Prior to our study, these pastures were rested at least once every 3rd spring to allow forage species to be undisturbed during the growing season. The permittee at this site runs approximately 600 head of cattle each year.

Table 1. Summary of the vegetation data collected for the Grouse & Grazing Project at 5 study sites in southern Idaho, 2014-2018.

Data Stream	Time of Collection	Sample Locations	Years Collected	Purpose
Early Season Vegetation		Nests from previous year and		Quantify vegetation characteristics
Monitoring	March - April	paired random plots	2017 – 2018	when hen is selecting nest site
				Quantify vegetation characteristics
Nesting Season Vegetation		Nests from current year &		of current year nest sites and
Monitoring	April - July	random plots ¹	2014 – 2018	treatment pastures
Brood Vegetation		Locations where a hen with a		Quantify vegetation at brood
Monitoring	May - July	brood was confirmed	2016 – 2018	locations
Post-Growing Season		5	2015 2010	Quantify height, obstruction, and
Vegetation Monitoring	July - August	Random plots	2015 – 2018	utilization of grass
Litilization / Dattona Llag		Customentia tura manata the univalence		Overtification and succe
Utilization/Pattern Use	July - August	Systematic transects throughout	2015 – 2018	Quantify utilization and grass
Monitoring Utilization/Biomass	April (cages	treatment pastures Random plots in spring grazed	2013 – 2018	height
Removal (grazing exclosure	placed), August	(current year) treatment		Quantify utilization and biomass
cages)	(clipped)	pastures	2016, 2018	removal
cagesy	(спррси)	pastures	2010, 2018	Create a DNA reference database
				and a library of voucher specimens
		Treatment pastures and		to confirm plant ID and use as a
Plant Collections	April - August	surrounding areas	2017 – 2018	training guide

¹From 2014-2017, we also measured nesting season vegetation at paired non-nest plots associated with each nest plot (100-200m away from each nest plot).

FIELD METHODS

We have written detailed field sampling protocols for all aspects of the Grouse & Grazing Project, including vegetation sampling protocols (Conway et al. 2018). We are collecting the following vegetation data to help quantify sage-grouse habitat selection and cattle grazing intensity on the experimental treatment pastures associated with the Grouse & Grazing Project (Table 1):

- Early-season Vegetation Surveys
 - Nest plots from prior years
 - o Paired random plots
- Nesting-season Vegetation Surveys
 - Nest plots from current year
 - o Paired non-nest plots
 - Random plots
- Brood Vegetation Surveys
 - o Plots at sites used by hens with broods <42 days of age
- Post-growing Season Vegetation Surveys
 - o Random plots
- Utilization Transects
 - Landscape appearance estimates along transects
 - Grass height and percent removal estimates along transects
- Grazing Exclosures
 - Clipping above-ground biomass within grazing exclosure cages
 - o Clipping above-ground biomass in paired grazed plots adjacent to cages
- Plant Collection Surveys

For sake of organization, we describe the nesting-season vegetation surveys first because they are the most detailed and subsequently we describe the other types of vegetation surveys since many of them are a reduced version of nesting-season vegetation surveys.

Nesting-Season Vegetation Surveys

We measured nesting-season vegetation (at estimated hatch date for sage-grouse nests) at 3 types of plots: nest plots, paired non-nest plots (100-200 m from each nest), and random plots. Nest plots were centered on sage-grouse nests. Each paired non-nest plot was associated with a specific nest plot (100-200m away in a random direction and centered on a sagebrush shrub that was large enough to contain a sage-grouse nest). Each nest plot had only one paired non-nest plot associated with it. Random plots were at randomly generated locations and were also centered on sagebrush shrubs. All random plots were within the experimental treatment pastures. We randomly generated 40 locations within each experimental treatment pasture that were no closer than 100 m from one another to create random locations to use for random plots.

Plot Placement in the Field

Each year, we strived to conduct vegetation sampling at a minimum of 20 random plots in each pasture (except at Pahsimeroi Valley in 2017-2018 because we monitored 7 pastures and did not have the personnel to complete 20 per pasture; we completed 10-15 per pasture instead). Starting in 2017, we only measured paired non-nest plots when time allowed (we placed priority on nest plots and random plots). We completed 50 paired non-nest plots in 2017 and 0 in 2018.

All plots were centered on a focal shrub. Nest plots were centered on the shrub (or rarely clump of grass) in which the hen built its nest. Paired non-nest and random plots were centered on a focal shrub that was suitable for a sage-grouse nest (based on prior years' nest plot data). At each plot, we spread 2 30-m tapes that intersected at the 15-m mark over the focal shrub in each cardinal direction (Fig. 4).

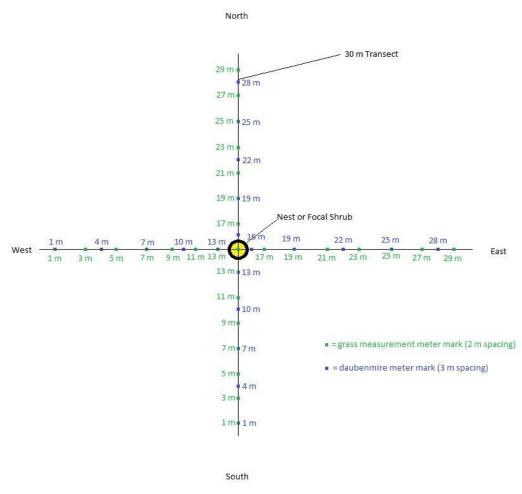


Figure 4. Visual depiction of the placement of 2 30-m tapes stretched to conduct vegetation sampling at nest plots, random plots, and paired non-nest plots for the Grouse & Grazing project in southern Idaho, 2014-2018.

Each plot (nest, paired non-nest, and random plots) consisted of 6 types of data collection: a set of 5 photographs to estimate percent nest concealment, measurements of the nest or focal shrub (or the patch of shrubs), 2 line-intercept transects to estimate percent shrub cover, estimates of perennial grass height (we do not measure heights for cheatgrass, *Bromus tectorum*, or other annuals) and grazing intensity (by species) along the line transects, Daubenmire plots to estimate percent ground cover, and a count of herbivore fecal droppings along the line transects. Detailed descriptions of each of these 6 components are in our vegetation sampling protocols (Conway et al. 2018).

Landscape Appearance

We used the landscape appearance method (Coulloudon et al. 1999) to estimate utilization in experimental pastures (and potential experimental pastures at sites where the experimental pastures had not been selected yet). We used ArcGIS to randomly place a grid of north-south transects in experimental pastures and potential experimental pastures. If the pasture was grazed by livestock during spring or summer, we placed transects 300 m apart and sampled at 200-m intervals along each transect. If the pasture was not grazed by livestock during spring or summer that year, we instead placed transects 500 m apart and sampled at 200-m intervals (because we were expecting minimal utilization in pastures that did not have cows in them). At 200-m intervals along each transect, the observer stopped walking and estimated utilization according to the utilization classes in Coulloudon et al. (1999) within a 15-m radius half-circle in front of them (Table 2). The observer also estimated the percent cover of cheatgrass and the most dominant overstory shrub and perennial grass within the same 15-m radius half-circle in front of them at each sample point along the transect (i.e., every 200 m).

Table 2. Utilization classes that we used to estimate percent utilization along landscape appearance transects (based on Coulloudon et al. 1999).

1 1	,
Utilization	
Class	Description
0-5%	The rangeland shows no evidence of grazing or negligible use.
6-20%	The rangeland has the appearance of very light grazing. The herbaceous forage plants may be topped or slightly used. Current seed stalks and young plants are little disturbed.
21-40%	The rangeland may be topped, skimmed, or grazed in patches. The low value herbaceous plants are ungrazed and 60 to 80 percent of the number of current seedstalks of herbaceous plants remain intact. Most young plants are undamaged.
41-60%	The rangeland appears entirely covered as uniformly as natural features and facilities will allow. Fifteen to 25 percent of the number of current seed stalks of herbaceous species remain intact. No more than 10 percent of the number of low-value herbaceous forage plants are utilized. (Moderate use does not imply proper use.)
61-80%	The rangeland has the appearance of complete search ^b . Herbaceous species are almost completely utilized, with less than 10 percent of the current seed stalks remaining. Shoots of rhizomatous grasses are missing. More than 10 percent of the number of low-value herbaceous forage plants have been utilized.
81-94%	The rangeland has a mown appearance and there are indications of repeated coverage. There is no evidence of reproduction or current seed stalks of herbaceous species. Herbaceous forage species are completely utilized. The remaining stubble of preferred grasses is grazed to the soil surface.
95-100%	The rangeland appears to have been completely utilized. More than 50 percent of the low-value herbaceous plants have been utilized.

a "covered" means that foraging ungulates have passed through the area.

Stocking Rate

Each year, we record the number and timing of cattle that graze each experimental treatment pasture and those that are near these pastures. We communicated with range management specialists and permittees at each study site to document the number and dates for which cattle were turned out and removed from each pasture. We collected this data for every year of the study at a given field site and ≥3 years prior to when we began field work.

^b "complete search" means that foraging cattle have spent considerable time foraging in the area and were not just passing through.

SUMMARIZATION METHODS

Pasture Boundaries

The boundary of the pastures in the pre-treatment years was often not the same as the boundary of the pastures after the treatments were implemented. This was typically due to the installation of electric fences to cut existing pastures into 2 halves so that we could concentrate grazing pressure and allow ranchers more flexibility to meet the needs of the study while also achieving the goals of their operation (i.e., so that they only had to adhere to the study design within one half of a pasture). We used the boundary of the post-treatment pastures for all comparisons, even those that included years prior to the treatments.

Pasture Level

For comparison of grass metrics between pastures, we first calculated a mean for each sampling plot because plots were our primary sampling unit. We then used this plot mean to calculate a mean among all plots for an entire pasture. We compared mean droop height of grasses among pastures and years at each study site. For the current year (2018), we also compared grass droop heights within a pasture based on 4 categories: 1) all species combined, 2) all species excluding Sandberg bluegrass, 3) all grasses that were not under a shrub (out in the open), and 4) all grasses that were under a shrub. For the latter 2 categories (under and not under a shrub), we used all perennial grass plants measured regardless of species (i.e., we included Sandberg bluegrass).

Grass Height Measurements

We measured the height of each perennial grass plant in an individual transect in 3 separate ways:

- Droop height The tallest part of an individual perennial grass (including the flowering stalk)
- Leaf height The tallest part of the grass plant excluding the flowering stalk (i.e., just the leaves)
- Effective height A visual obstruction measurement created by placing a meter stick behind the grass plant and recording the lowest interval bar that was ≤50% obscured by the grass (Musil 2011; *detailed methods can be found in* Conway et al. 2018).

We compared the differences of these 3 measurements between grazed and un-grazed pastures in 2018. We used the individual grass as the sample unit, not the plot, for this comparison.

Shrub Cover

We compared shrub cover from the line-intercept transects among pastures and years. Cover was estimated by taking the length of the transect that was intercepted by shrubs and dividing it by the length of the entire transect (60 m or 6,000 cm).

Utilization

We estimated utilization based on 3 different methods for this report: 1) Average of ocular estimates of biomass removed for individual grass plants on random vegetation plots, 2) proportion of grazed grass plants (i.e., proportion of grass plants with >0 biomass removed), and 3) utilization estimates via the landscape appearance method (Coulloudon et al. 1999). We compared estimates of biomass removed (via ocular estimation) and proportion of grazed plants at the pasture level for the current year (2018). These estimates were generated at the plot level from the post-growing season vegetation surveys. Those plot-level means were used to calculate pasture-level means. This was done to avoid pseudoreplication because the plot is our sampling unit.

For utilization estimates from the landscape appearance transects, we obtained pasture-level estimates by taking the mean of all points sampled within that pasture. We used the mid-point of the ranges outlined in Table 2 to represent each of the 6 categories (i.e., the "slight" category was the mid-point between 6 and 20, or 13).

We created maps of pattern use by herbivores in each pasture based on our visual estimates of utilization from the landscape appearance transects. We used the Inverse Distance Weighted (IDW) tool in ArcGIS (version 10.4). IDW interpolation is based on the assumption that points closer together are more alike than those further apart. An advantage of using IDW interpolation is that it is an exact interpolator (i.e., the interpolated value at each point where a measurement was taken will line up directly with what was actually measured at that point). We used the 12 nearest neighbors to interpolate each pixel of the resulting raster surface. The resulting maps were then classified into the 6 categories used to estimate utilization in the field (see Table 2).

Stocking Rate

We calculated stocking rates in head-months (HMs) for all years after our treatments began at each study site. We calculated head-months by using the following formula:

$$\frac{n_c \times (t_2 - t_1)}{(\frac{365}{12})}$$

Where n_c is the total number of cow-calf pairs turned into that pasture, t_I is the initial turn-out date, and t_Z is the date they were removed from the pasture. If there were different stocking rates across a given season (e.g., 100 cows were added to a pasture for the first 10 days and then 100 more cows were added on the 11th day), we calculated head-months for each separate stocking rate and summed them together to report the stocking rate for the entire season.

RESULTS

Weather

Going into the 2018 growing season, Sheep Creek received below-average overwinter precipitation (Fig. 5A) and average to slightly below-average temperatures (Fig. 5B). Rainfall in May 2018 was above average, which helped improve the moisture deficit from the below-average overwinter precipitation.

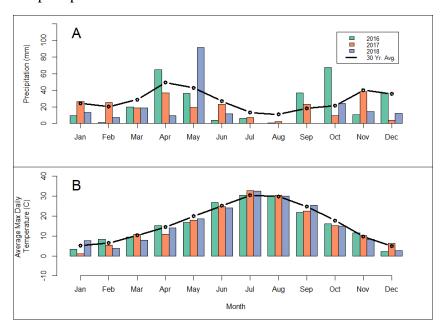


Figure 5. Total monthly precipitation (A) and average max daily temperature by month (B) with 30-year average (dark line) at Sheep Creek, Idaho 2016-2018.

Descriptive Vegetation Characteristics

Pasture Level Comparison

Mean grass height at Sheep Creek has varied each year but in general has increased since our treatments began (Fig. 6). Grass heights were generally higher in our post-growing season surveys than during the nesting season surveys - the exceptions being Tokum-Bambi West in 2015 & 2017-2018, and in East Blackleg North in 2015. A thesis by Janessa Julson (2017) documented the extent of variation in grass height among our study sites.

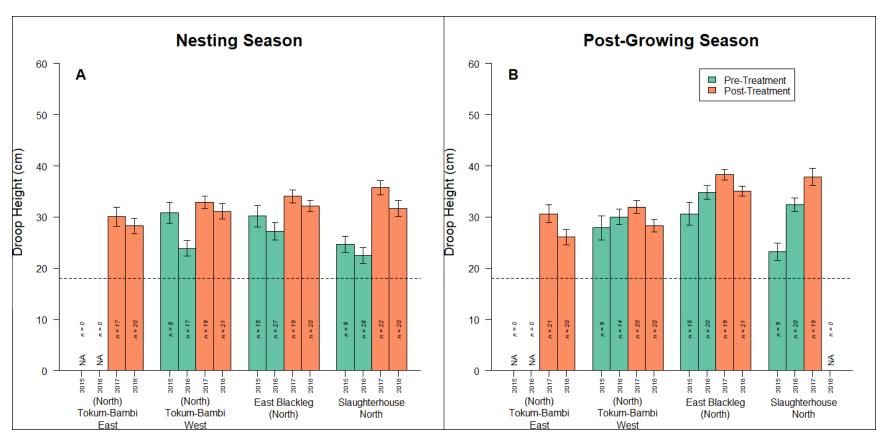


Figure 6. Droop height during the nesting season (A; Apr-Jun) and the post-growing season (B; Jul-Aug) for all perennial grass species combined in pre-treatment (green) and post-treatment (orange) years for 4 pastures at Sheep Creek, Idaho 2014-2018. Error bars represent ±1 standard error and means are based on random plots (excludes nest and paired non-nest plots). NA indicates a pasture that was not measured in that year. The dashed line represents 18 cm (7 in.), the height mentioned as a management target by the sage-grouse habitat guidelines (Connelly et al. 2000).

The mean grass height after excluding Sandberg bluegrass (yellow bars) was taller than the other 3 grass height categories (those that did not exclude Sandberg bluegrass) in most pastures, the exception being (North Tokum-Bambi East; Fig. 7). Grasses under a shrub (orange bars) were the second-tallest category in most pastures. Within a pasture, grass heights were comparable during the nesting season (panel A) and post-growing season (panel B). Tokum-Bambi West was grazed in the spring of 2018. Tokum-Bambi East is typically trailed through each spring as the permittee moves herds from the northern pastures south to the mountains. East Blackleg North was the only pasture the showed an obvious increase in mean grass height from the nesting season to the post-growing season and was also not grazed.

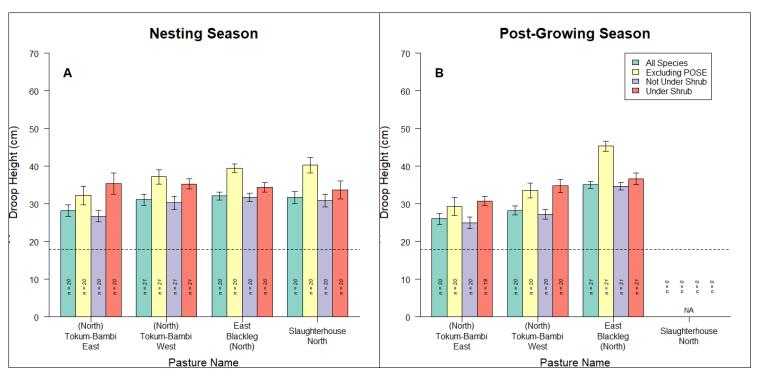


Figure 7. Mean droop height for 4 different subsets of grasses: all grass species within a plot, all grass species excluding Sandberg bluegrass (Poa secunda), all grass plants that were under a shrub, and all grass plants that were not under a shrub in both nesting season (A) and post-growing season (B) plots at Sheep Creek, Idaho 2018. Error bars represent ±1 standard error. Sample sizes (n) indicate the number of plots (not the number of grass plants) used to create the mean and standard error. The dashed line represents 18 cm (7 in.), the height mentioned as a management target by the sage-grouse habitat guidelines (Connelly et al. 2000).

Grass Height Measurement Comparison

Sandberg bluegrass, squirreltail (*Elymus elymoides*), bluebunch wheatgrass, Idaho fescue, and needlegrasses (*Achnatherum spp.* and *Hesperostipa spp.*) were the most abundant grasses in our post-growing season surveys at Sheep Creek in 2018. Grass height differed among species and differences were apparent for all three height measurements (Fig. 8). All grasses that were measured in grazed pastures were shorter than those in ungrazed pastures for the droop height measurements except for needlegrasses. Leaf height and effective heights were comparable between grazed and ungrazed pastures for most species.

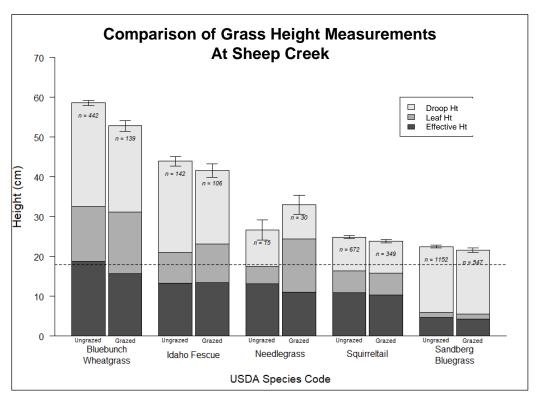


Figure 8. Mean height of the 5 most common species of perennial grasses based on 3 height metrics on post-growing season (Jul-Aug) random plots at Sheep Creek, Idaho in 2018. Heights compared were droop height (using highest part of plant) = "Droop Ht.", droop height excluding the flowering stalk = "Leaf Ht", and effective height (modified visual obstruction for an individual plant) = "Effective Ht". Heights were compared seperately for plants in ungrazed and grazed pastures based on whether they were grazed in 2018 prior to post-nesting season surveys (denoted directly below each bar). Sample sizes are just below the top of each bar. Error bars denote ±1 standard error of the droop height only. The dashed line represents 18 cm (7 in.), the height mentioned as a management target in the sage-grouse habitat guidelines (Connelly et al. 2000).

Shrub Cover

Shrub cover was fairly consistent across all pastures. In general, shrub cover has increasd slightly in all pastures since the treatments began (Fig. 9). Sagebursh species, including low sagebrush and Wyoming big sagebrush, make up the majority of shrubs at Sheep Creek in all years. On all of our treatment pastures, we expect to see only small changes in shrub cover between years; changes caused by annual variation in precipition.

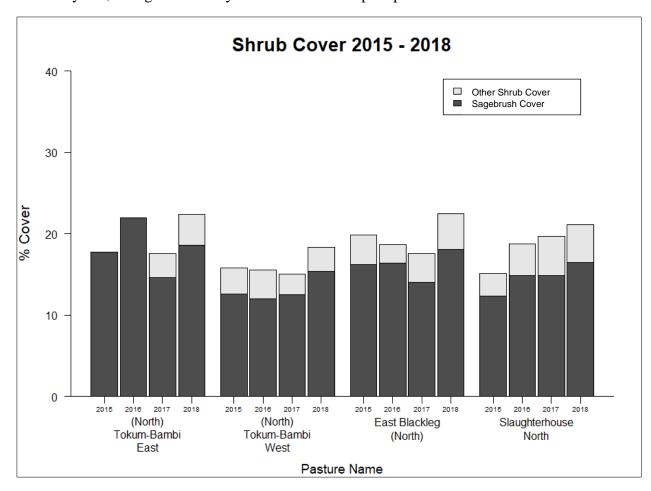


Figure 9. Shrub cover (split into sagebrush and other shrub cover) and in each of 4 treatment pastures at Sheep Creek, Idaho 2015-2018.

Stocking Rates and Grazing Pressure

Grazing treatments for the Grouse & Grazing Project began at Sheep Creek in 2017. We had a mis-communication in that year (2017) with the permittee and one of the pastures was grazed out of rotation (North Tokum-Bambi West). We also had a few cattle escape into the East Blackleg North pasture for a week. Slaughterhouse North was scheduled to be grazed in the fall of 2018, but that had to be put on hold when the Cat Fire burned the entirety of that pasture in July. This fire also affected Tokum-Bambi East, but it was not scheduled to receive any cattle in 2018. Stocking levels in head-months for all treatment pastures 2017-2018 ranged from a high of 544 to a low of 286. One thing of note is the difference in duration and intensity in Tokum-Bambi West in 2017 versus 2018. In 2017, this pasture received less cattle for a longer duration and in 2018 it received far higher numbers of cattle but for a shorter period.

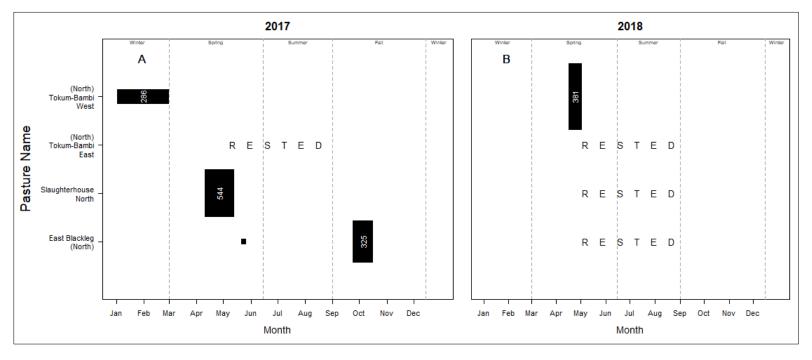


Figure 10. Timing and duration of cattle stocking at the Sheep Creek study site during the treatment period of the study 2017-2018. Width of black bars indicate the average number of cattle per day in that pasture. White numbers inside black bars represent the total head-months during that period. Note that in 2017 both East Blackleg (North) and (North) Tokum-Bambi West were grazed while temporary electric fences were not up.

In 2018, stocking level in our treatment pastures were lower than surrounding pastures (those not part of our study; Fig. 11). West Blackleg, East Blackleg South, and Last Chance received far more head-months than our spring grazing treatment pasture in 2018. Three of our treatment pastures were rested in 2018 (North Tokum-Bambi East had several days of trailing which is why there is a dot indicating use in that pasture). Slaughterhouse North was rested due to the Cat Fire in July 2018.

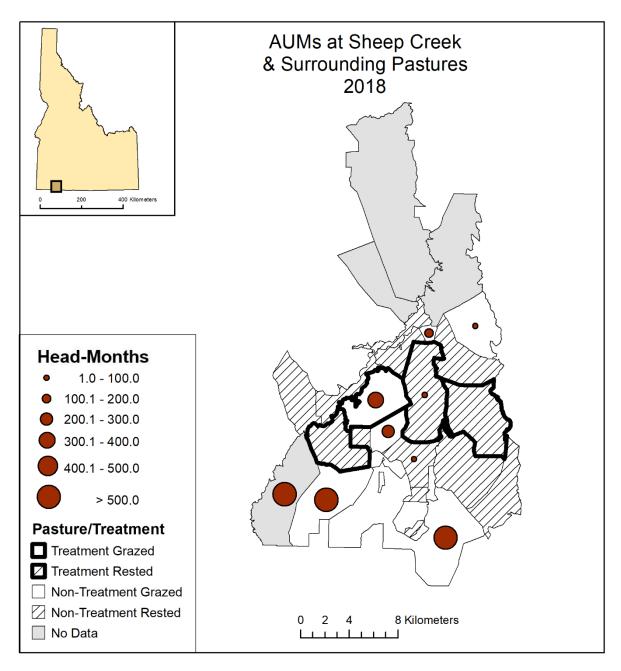


Figure 11. Stocking levle calculated in head-months in treatment and surrounding pastures at Sheep Creek, Idaho in 2018.

Estimates of Utilization

Utilization estimates were negligibile in Tokum-Bambi East and Tokum-Bambi West based on visual estimates of individual plants (<3%, Fig. 12A). Interestingly, these estimates approached 5% when summarized as the proportion of grass plants grazed on a plot (Fig. 12B). The proportion of grazed grass plants always yeilded a higher estimate of utilization than the visual estimate of % biomass removed. When we compared estimates across the 4 categories, grass plants under a shrub always had the lowest use.

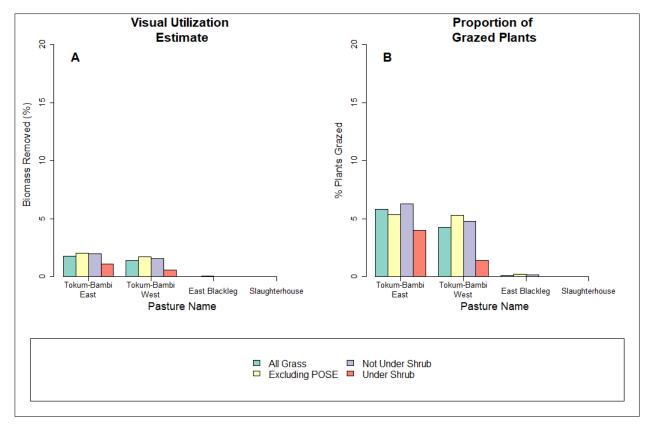


Figure 12. Utilization based on visual estimates of percent biomass removed on individual grass plants and the proportion of grass plants grazed at random plots in 2018 at Sheep Creek, Idaho. Estimates were taken from the post-growing season surveys conducted in July – August 2018. In 2018, only Tokum-Bambi West was grazed prior to our post-growing season surveys. Tokum-Bambi East was trailed through several times as cows passed to southern pastures on USFS property.

Our utilization estimates from the landscape appearance method varied among years (Fig. 13). Tokum-Bambi West (which was grazed in the spring of 2018) showed negligible use and was comparable to levels observed in the only ungrazed pasture in the same year (East Blackleg 2018). Utilization levels have been lower since the treatments began in 2017.

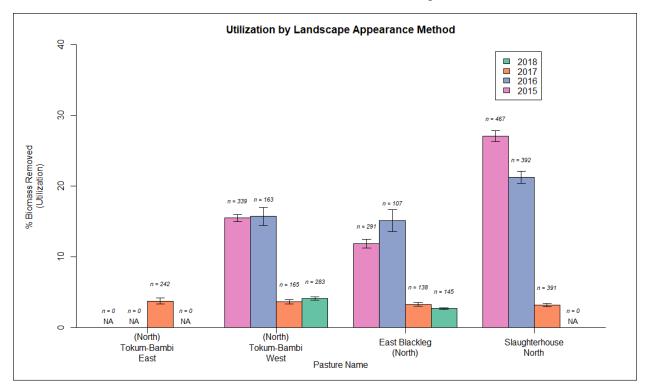


Figure 13. Utilization estimates using the landscape appearance method for pre- and post-treatment periods at Sheep Creek, Idaho 2018. Error bars represent ±1 standard error. NA indicates that pasture was not measured in that particular year.

One of the advantages of using the landscape appearance method is that we can map spatial patterns of cattle use throughout each pasture. Not surprisingly, we found that cattle do not uniformly graze any of our treatment pastures (Fig. 14). This is likely due to lack of uniform availability of water, topography, and grass. This was especially apparent in Slaughterhouse in 2015 and 2016; cattle had much higher use near water sources and typically left the interiors of these pastures or areas further from water sources less used. At Sheep Creek, we also observed spring-grazed pastures that showed very little post-growing season use. For example, Tokum-Bambi West in 2018 had a short and early stocking schedule (Fig. 10b) and showed negligible post-growing season use (Fig.14-2018). This was also the case for Slaughterhouse in 2017 (Fig. 10a & Fig. 14-2017).

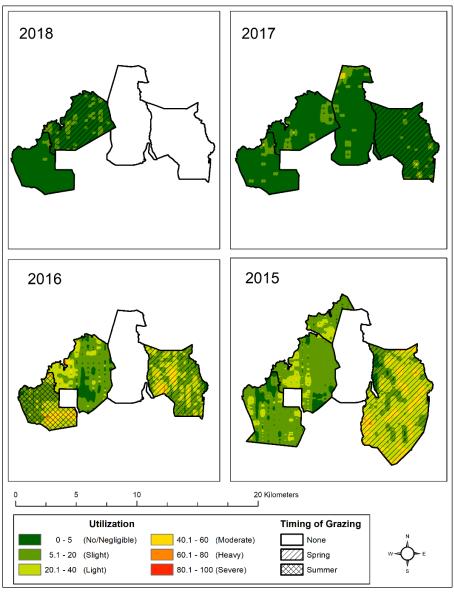


Figure 14. Pattern use mapping based on landscape appearance transects at Sheep Creek, Idaho 2015-2018.

REFERENCES

- Beck, J. L., and D. L. Michell. 2000. Influence of livestock grazing on sage-grouse habitat. Wildlife Society Bulletin 28:993–1002.
- Bernstein, B. B., and J. Zalinski. 1983. An optimum sampling design and power tests for environmental biologists. Journal of Environmental Management 16:35–43.
- Boyd, C. S., J. L. Beck, and J. A. Tanaka. 2014. Livestock grazing and sage-grouse habitat: impacts and opportunities. Journal of Rangeland Applications 1:58–77.
- Connelly, J. W., M. A. Schroeder, A. R. Sands, and C. E. Braun. 2000. Guidelines to manage sage-grouse populations and their habitats. Wildlife Society Bulletin 28:967–985.
- Conway, C. J., A. Meyers, K. Launchbaugh, D. Musil, P. Makela, and S. Roberts. 2018. The Grouse & Grazing Project: Effects of cattle grazing on sage-grouse demographic traits 2018 Annual Report. College of Natural Resources, University of Idaho.
- Coulloudon, B., K. Eshelman, J. Gianola, N. Habich, L. Hughes, C. Johnson, M. Pellant, P. Podburny, A. Rasmussen, B. Robles, P. Shaver, J. Spehar, and J. Willoughby. 1999.
 Utilization Studies and Residual Measurements. Interagency Technical Reference 1734-3. U.S. Department of Agriculture (NRCS) and U.S. Department of Interior (Bureau of Land Management). Denver, CO.
- Crawford, J. A., R. F. Miller, T. D. Whitson, C. S. Boyd, M. A. Gregg, N. E. West, R. A. Olson, M. A. Schroeder, and J. C. Mosley. 2004. Ecology and management of sage-grouse and sage-grouse habitat. Journal of Range Management 57:2–19.
- Green, R. H. 1979. Sampling design and statistical methods for environmental biologists. Wiley Interscience, Chichester, England.
- Hovick, T. J., R. D. Elmore, S. D. Fuhlendorf, and D. K. Dahlgren. 2015. Weather constrains the influence of fire and grazing on nesting greater prairie-chickens. Rangeland Ecology and Management 68:186–193.
- Julson, J.C. 2017. Variation in perennial grass height within greater sage-grouse nesting habitat. M.S. Thesis, University of Idaho, Moscow, ID.Neel, L. A. 1980. Sage-grouse response to grazing management in Nevada. M.S. Thesis, University of Nevada, Reno, NV.
- Pedersen, E. K., J. W. Connelly, J. R. Hendrickson, and W. E. Grant. 2003. Effect of sheep grazing and fire on sage-grouse populations in southeastern Idaho. Ecological Modelling 165:23–47.
- La Pierre, K. J., S. Yuan, C. C. Chang, M. L. Avolio, L. M. Hallett, T. Schreck, and M. D. Smith. 2011. Explaining temporal variation in above-ground productivity in a mesic grassland: the role of climate and flowering. Journal of Ecology 99:1250–1262.

- Moynahan, B. J., M. S. Lindberg, J. J. Rotella, and J. W. Thomas. 2007. Factors affecting nest survival of greater sage-grouse in northcentral Montana. Journal of Wildlife Management 71:1773–1783.
- Musil, D. D. 2011. Use of dwarf sagebrush by nesting greater sage-grouse. Pages 119–136 in Ecology, conservation, and management of grouse. Studies in Avian Biology. University of California Press, Berkeley, California.
- Schroeder, M. A., C. L. Aldridge, A. D. Apa, J. R. Bohne, C. E. Braun, S. D. Bunnell, J. W. Connelly, P. A. Deibert, S. C. Gardner, M. A. Hilliard, G. D. Kobriger, S. M. McAdam, C. W. McCarthy, J. J. McCarthy, D. L. Mitchell, E. V. Rickerson, and S. J. Stiver. 2004. Distribution of sage-grouse in North America. The Condor 106:363-376.
- Skinner, R. H., J. D. Hanson, G. L. Hutchinson, and G. E. Schuman. 2002. Response of C3 and C4 grasses to supplemental summer precipitation. Rangeland Ecology and Management 55:517–522.
- Stewart-Oaten, A., W. W. Murdoch, and K. R. Parker. 1986. Environmental impact assessment: "pseudoreplication" in time? Ecology 67:929–940.